Towards a Perceptually-grounded Theory of Microtonality: issues in sonority, scale construction and auditory perception and cognition

Brian Bridges

Thesis submitted to the National University of Ireland, Maynooth, for the degree of Doctor of Philosophy

Volume 1 of 2

Department of Music
National University of Ireland, Maynooth
October 2012

Head of Department: Prof. Fiona M. Palmer
Supervisor: Dr Victor Lazzarini
Table of Contents

List of Figures
Acknowledgements
Abstract
Relevant Concert Presentations by the Author
Chapter 1: Introduction, Aims and Structure, Definitions and a Historical Survey of Tuning and Scale Construction in Western Music
 1.1 Introduction
 1.2 Outline of Aims and Thesis Structure
 1.3 Preliminary Definitions
 1.3.1 Defining and Delineating Microtonality and Related Terms
 1.3.2 Defining Pitch as a Psychophysical Attribute
 1.3.3 Relationships Between Pitches and Concepts of Consonance and Dissonance
 1.3.4 Models of Relationships Between Stimulus and Cognition
 1.4 A History of Interval Definition—Music, Measurements and Mathematics
 1.4.1 Ancient Sources and the Pythagorean Scale
 1.4.2 Pythagorean and Just Diatonic Scales Compared
 1.4.3 Generating the Just Diatonic Scale
 1.4.4 Modulation, Tuning Inconsistencies and Mean-tone Temperament
 1.4.5 Enharmonic Distinctions and Proto-microtonal Intervals
 1.4.6 Towards Equal Temperament
 1.4.7 Standardisation and Fragmentation in Scale Construction Methodologies
 1.5 Conclusion
Chapter 2: Tempered Microtonality and Hybrid/Compromise Approaches in Twentieth-century Western Music
 2.1 Equal Temperament Microtonality in Twentieth-century Western Music
 2.2 One Possible Beginning: Julián Carrillo’s *Sonido Trece* (‘Thirteenth Sound’)
 2.3 Busoni’s Sketch of a Microtonal Approach
 2.4 Alois Hába and Chromatic Equal Temperament Microtonality
 2.5 Ivan Wyschnegradsky and Functional Approaches to Quarter-tones
 2.6 Ives and a Prototype of Perceptually-Informed Microtonality
2.7 Hybrid Approaches: Compromises between Equal-temperament and Just Intonation via Nineteen-tone Equal Temperament (19TET) and beyond (Yasser and Fokker) 104

2.8 Hybrid Approaches Beyond the Octave Delimiter: the Bohlen-Pierce Scale 120

2.9 Conclusion: Assessment of Early Equal Temperament Microtonality and Hybrid Approaches 125

Chapter 3: Just Intonation Microtonality I: Harry Partch, Ben Johnston and Geometric Formal Models of Just Intonation 128

3.1 Progenitors of American Just Intonation Microtonality 128

3.2 Partch’s Context and Legacy 129

3.3 Partch's Inspiration for the use of Just Intonation Intervals 130

3.4 Partch's Corporeal Philosophy, Experimental Ethos and Resulting Creative Practice 132

3.5 Partch’s Microtonal Theorising: Interval Subdivision, Scale Construction and Spatial Maps 134

3.6 Defining and Developing Relationships: Major (Otonality) and Minor (Utonality) Paths and Extended Just Intonation 142

3.7 Extended Spatial Maps: Theoretical Model to Interface to Formal Structures 147

3.8 Partch's Model of Consonance/Dissonance Relationships 151

3.9 Partch's Compositional Practice in Relation to his Theories 158

3.10 Johnston: Extended Just Intonation and Extended Notation 162

3.11 Johnston's Compositional Philosophy and Conceptual Principles 164

3.12 Pitch as Ratio: Perceptual and Functional Relationships 171

3.13 Johnston's Multi-dimensional Functional Models 181

3.14 Conclusion 185

Chapter 4: Just Intonation Microtonality II: the Perceptual-Conceptual/Ecological Approaches of La Monte Young and James Tenney 188

4.1 Experimentalism and Perceptual-Conceptualism 188

4.2 Young’s Perceptual-Conceptualism 192

4.3 The Harmonic Series as Formal Structure in Young’s Work 196

4.4 Young's Harmonic Drones as Environments/Ecological Structures and Embodied Exploration 200

4.4.1 Conceptual Background: Composition–as–Environment 200

4.4.2 Spatialising Young’s Pitch–space 202

4.4.3 Defining Young’s Pitch–space: Interactions Between Pitch Specification and Perceptual Differentiation 209
4.4.4 Henry Flynt’s ‘Acognitive Culture’ as Theoretical Rationale for Young’s
Embodied Pitch–spaces 212
4.5 Young's Interval Choices: Structural Choices and Perceptual Issues 216
4.5.1 Formal Structures as Approached Through Perceptual Circumstances 216
4.5.2 Focus on Formal Structuring Attributes 220
4.5.3 Procedural Generation of Materials and Symmetry in Formal Structures 223
4.5.4 Dimensionality Revisited 229
4.5.5 Transcendentalist Specifications 238
4.7 James Tenney: American Spectral Music and a Theory of Microtonal Harmony
242
4.8 Tenney, Cage and a Perceptually-Grounded Theory of Harmony 246
4.8.1 A History and Definition of 'Harmony' and the 'Consonance-Dissonance
Concept' 247
4.8.2 Tenney's Formal Model of Harmonic Structures 252
4.8.3 Microtonal Harmony and Models of Perception and Cognition 256
4.9 Conclusion 268
4.9.1 Young and Tenney Compared 268
4.9.2 Perceptually–informed Models of Microtonal Just Intonation 269

Chapter 5: The Psychology of Intervals: the Relationship Between Stimulus and
Cognition for Microtonal Materials 273
5.1 Categories and Memory in Music Perception 273
5.2 Memory in Relation to Music: Roles, Structures, Capacities and Strategies 275
5.2.1 Structures and Roles of Human Memory 275
5.2.2 Echoic-memory/Early Processing 276
5.2.3 Short-term and Long-term Memory Processes 278
5.2.4 Short-term Memory Capacity and Mnemonic Strategies 281
5.2.5 Miller (1956) and Cognitively–based Theories of Music 283
5.2.6 Variability in Chunking Capacities 287
5.3 Categorical Perception, Cognition and Microtonality 293
5.3.1 Categorical Perception and the Cognition of Categories 293
5.3.2 Musical Scales and Categorical Perception 294
5.3.3 Musical Pitch Categories: Sensory, Cognitive–Cultural or Both? 296
5.4 Conclusion: Memory, Category and Performance for Microtonal Intervals 313

Chapter 6: The Psychology of Pitch-Spaces: Structures, Hierarchies, Metaphors and
Environments 317
6.1 From Categories to Spaces
6.2 Geometrical/Spatial Models of Tonal Cognition
 6.2.1 Cognitive Models of Pitch
 6.2.2 Octave Equivalence, Pitch-Chroma and Helical Representations of Pitch-Space
 6.2.3 Beyond the Tonnetz/Lattice: More Accurate Modelling of Perceived Distances/Hierarchies in Tonal Relationships in Krumhansl (1979) and Following
 6.2.4 Extended Functional Levels and Microtonal Hierarchy Judgements: Commentary on Jordan (1987) and Krumhansl (1979)
 6.2.5 A Cognitively-Based Music Theory of Tonal Hierarchies (Lerdahl, 2001)
 6.2.6 A Potential Model of Ecologically-Derived Cognitive Structuring for Pitch Hierarchies
6.3 Perceptual/Ecological and Heuristic Models of Tonal Cognition
 6.3.1 Bottom-up Perceptual/Ecological Models
 6.3.2 Perceptual Commentary in Lerdahl (2001): Psychophysical Divisions as Functional Structures and Bottom-up Attentional Effects
 6.3.3 Heuristic Alternatives to Fixed Hierarchies (Butler, 1989) and Related Critiques of Krumhansl (1979)
6.4 Embodied and Multi-modal Models of Tonal Cognition
 6.4.1 Embodied and Ecological Models in Cognition
 6.4.2 Embodied Cognitive Models of Musical Pitch
 6.4.3 Towards an Embodied Model of Tonal Cognition and Microtonality
 6.4.4 Towards an Embodied and Multi-modal Model of Tonal Cognition and Microtonality
6.5 Conclusion: The Psychology of Pitch Environments

Chapter 7: Commentary on the Portfolio of Microtonal Compositions

7.1 Theory, Practice and Compositional Rationales
7.2 Infraction (2009) for violin, viola and electric guitar
 7.2.1 Infraction (2009): Introduction
 7.2.2 Initial Microtonal/Structural Rationales in Composition
 7.2.3 Logistical and Perceptual Rationales in Composition
 7.2.4 Infraction (2009): Conclusion
7.3 Flatlining (2008) for string quartet
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.1 Flatlining (2008): Introduction</td>
<td>401</td>
</tr>
<tr>
<td>7.3.2 Microtonal and Perceptual Rationales in Composition</td>
<td>404</td>
</tr>
<tr>
<td>7.3.3 Totalism and Rhythmic Considerations in Composition</td>
<td>409</td>
</tr>
<tr>
<td>7.3.4 Performance/Logistical Considerations and Results</td>
<td>416</td>
</tr>
<tr>
<td>7.3.5 Flatlining (2008): Conclusion</td>
<td>422</td>
</tr>
<tr>
<td>7.4 Angels at the Shotgun Wedding (2007/08) for 23 electric guitars and tape</td>
<td>424</td>
</tr>
<tr>
<td>7.4.1 Angels at the Shotgun Wedding (2007/08): Introduction</td>
<td>424</td>
</tr>
<tr>
<td>7.4.2 Guitar and Tape Part Tuning Specifications and Sonorous Structure</td>
<td>432</td>
</tr>
<tr>
<td>7.4.3 Movement 1: ‘Departure’</td>
<td>448</td>
</tr>
<tr>
<td>7.4.4 Movement 2: ‘Inhalation/Choke’</td>
<td>456</td>
</tr>
<tr>
<td>7.4.5 Movement 3: ‘Take God out and Show Her a Good Time’</td>
<td>460</td>
</tr>
<tr>
<td>7.4.6 Movement 4: ‘Pathfinding’</td>
<td>466</td>
</tr>
<tr>
<td>7.4.7 Movement 5: ‘Return’</td>
<td>472</td>
</tr>
<tr>
<td>7.4.8 Angels at the Shotgun Wedding (2007/08): Conclusion</td>
<td>477</td>
</tr>
<tr>
<td>7.5 Making Ghosts from Empty Landscapes (2010) for uillean pipes, pipa, erhu, 2 violins and tape</td>
<td>478</td>
</tr>
<tr>
<td>7.5.1 Making Ghosts from Empty Landscapes (2010): Introduction</td>
<td>478</td>
</tr>
<tr>
<td>7.5.2 Drone-based and Textural Aspects of Composition</td>
<td>481</td>
</tr>
<tr>
<td>7.5.3 Melodic Microtonal Aspects of Composition</td>
<td>486</td>
</tr>
<tr>
<td>7.5.4 Making Ghosts from Empty Landscapes (2010): Conclusion</td>
<td>491</td>
</tr>
<tr>
<td>7.6 A Space for Tension (2012) for erhu, two violins and tape</td>
<td>493</td>
</tr>
<tr>
<td>7.6.1 A Space for Tension (2012): Introduction</td>
<td>493</td>
</tr>
<tr>
<td>7.6.2 Generating Tuning Schemes and Related Structures</td>
<td>496</td>
</tr>
<tr>
<td>7.6.3 Instrumental Articulations and Tuning for Grouping/Segregation and Consonance/Dissonance</td>
<td>513</td>
</tr>
<tr>
<td>7.6.4 A Space for Tension (2012): Conclusion</td>
<td>526</td>
</tr>
<tr>
<td>7.7 Conclusion: Practice–led Insights into Microtonal Composition</td>
<td>527</td>
</tr>
<tr>
<td>Chapter 8: Conclusion</td>
<td>533</td>
</tr>
<tr>
<td>8.1 Summary of Approach and Contributions</td>
<td>533</td>
</tr>
<tr>
<td>8.2 Summary of Conclusions</td>
<td>536</td>
</tr>
<tr>
<td>8.3 Possibilities for Future Development</td>
<td>548</td>
</tr>
<tr>
<td>Bibliography</td>
<td>550</td>
</tr>
</tbody>
</table>
Abstract

This thesis engages with the topic of microtonal music through a discussion of relevant music theories and compositional practice, alongside the investigation of theoretical perspectives drawn from psychology. Its aim is to advance a theory of microtonal music that is informed by current models of auditory perception and music cognition. In doing so, it treats a range of microtonal approaches and philosophies from duplex subdivision of tempered scales to the generation of intervals in just–intonation–based schemes, including systems derived directly from the structure of the harmonic series. It contains an analytical survey of case studies relating to twentieth–century microtonal approaches, which focuses on the conceptual and perceptual implications of the use of such materials by these early microtonal practitioners, through engagement with their stated theories and compositional practice. Through this process, it begins to advance components of a perceptually and cognitively–informed theory of microtonality, which is then consolidated by a series of theory–based chapters which investigates the phenomenon more singularly from the perspective of current theories within the field of psychology. The theories which are thus advanced are further informed by a component of compositional practice in the research process, which is used as a vehicle to refine and extend them. The result is a comprehensive theory of microtonal music which incorporates contexts drawn from ecological and embodied perspectives on perceptual and cognitive processes.